
Pragmatic Characteristics of Security Conversations
An Exploratory Linguistic Analysis

Benjamin S. Meyers, Nuthan Munaiah, Andrew Meneely
Department of Software Engineering

Rochester Institute of Technology
Rochester, NY

{bsm9339,nm6061,axmvse}@rit.edu

Emily Prud’hommeaux
Department of Computer Science

Boston College
Chestnut Hill, MA
prudhome@bc.edu

Abstract—Experts suggest that engineering secure software
requires a defensive mindset to be ingrained in developer
culture, which could be reflected in conversation. But what
does a conversation about software security in a real project
look like? Linguists analyze a wide array of characteristics:
lexical, syntactic, semantic, and pragmatic. Pragmatics focus on
identifying the style and tone of the author’s language. If security
requires a different mindset, then perhaps this would be reflected
in the conversations’ pragmatics. Our goal is to characterize
the pragmatic features of conversations about security so that
developers can be more informed about communication strategies
regarding security concerns. We collected and annotated a corpus
of conversations from 415,041 bug reports in the Chromium
project. We examined five linguistic metrics related to prag-
matics: formality, informativeness, implicature, politeness, and
uncertainty. Our initial exploration into these data show that
pragmatics plays a role, however small, in security conversations.
These results indicate that the area of linguistic analysis shows
promise in automatically identifying effective security communi-
cation strategies.

Index Terms—software engineering, security, discourse, natu-
ral language processing

I. INTRODUCTION

As developers engineer software, they communicate and
collaborate with one another in a variety of ways to discuss
design, code, and bugs. These communications, particularly
those in emails, chat conversations, bug reports, and code
reviews, provide a wealth of linguistic data with which one can
gain valuable insights into developers’ use of natural language.
In the past, researchers have used natural language metrics
to characterize various linguistic features of code review
feedback, including being acted-upon [1] and usefulness [2],
[3]. However, the pragmatics (i.e. style and tone of natural
language [4], [5]) of developers’ use of natural language has
largely been unexplored.

By analyzing linguistic pragmatics, we can understand not
just what developers said, but how they conveyed it. Our
goal in this work is to characterize the pragmatic features of
conversations about security so that developers can be more
informed about communication strategies regarding security
concerns. We address the research question:

RQ 1: Linguistic Pragmatics of Security
Does developers’ language exhibit different prag-
matic characteristics when discussing security?

II. METHODOLOGY

We collected a corpus of security-related conversations
from bug report discussions about the Chromium project.
We then used tags associated with bug reports to categorize
bugs, and their comments, as security and non-security. We
extracted metrics to quantify some pragmatic features and used
statistical methods to determine whether the two classes of bug
comments differ in their values of these metrics. We describe
our methodology in greater detail in the following paragraphs.

Data Collection: The corpus of natural language used in
this work was curated through the retrieval and annotation
of comments posted to bug conversations in the Chromium
project. The Chromium project uses Monorail, an open-source
issue tracking system built by Google, to manage bugs. We
used the Monorail RESTful API to programmatically down-
load bug reports as JSON-formatted documents. As of July 11,
2017, we had downloaded 435,822 bugs spanning nine years
(2008–2016) and totaling 3.9 GB.

Data Annotation: In the Chromium project, bugs are
associated with one or more tags. We used these tags to auto-
matically categorize the bugs into two relevant groups: security
and non-security. In our corpus, there were 16,165 unique
tags, of which 53 were determined to be related to security.
The three most frequent security-related tags were Type-
Bug-Security, Security_Impact-Stable, and Se-
curity_Severity-High. The comments associated with
any bug tagged with one or more of these tags was marked as
security. All other bugs were considered to be non-security.

Feature Extraction: We collected five metrics from the
natural language in our corpus of bug comments. We introduce
these metrics in Section III. The metrics are defined at either
the sentence- or token-level. Therefore, we split the bug
comments into sentences and the sentences into tokens (words)
all while retaining the annotation. We persisted all data (bugs,
comments, sentences, tokens, and the metrics) to a PostgreSQL
database with an aggregate size of 62GB. Shown in Table I is
a summary of the corpus curated in our study.

Statistical Analysis: We use association analysis to as-
sess if the pragmatic features, quantified by their respective
metrics, of natural language in bug comments are, in fact,
associated with security or non-security. For numerical-valued
metrics, we used the Mann-Whitney-Wilcoxon test to assess

if the distribution of a metric is similar across security and
non-security language. We regard the outcome from Mann-
Whitney-Wilcoxon test to be statistically significant if p-value
< 0.05. We further used Cliff’s δ to assess the strength of
association (if any). For categorical metrics, we used the χ2

test to assess if a metric is independent of bug type. We
regard the outcome from χ2 test to be statistically significant
if p-value < 0.05. We further used Pearson’s ϕ to assess the
strength of dependence (if any).

Summary: A summary of the corpus used in our study is
shown in Table I. We persisted all data (bugs, comments, sen-
tences, tokens, and the metrics) to a PostgreSQL database with
an aggregate size of 62GB. We have released this corpus [6]
to encourage further exploration of pragmatic characteristics
of security conversations, as well as lexical, syntactic, and
semantic characteristics.

TABLE I: Summary of the corpus used in our study.

Entity # Security (%) / Total
Bugs 11,236 (2.7%) / 415,041

Comments 88,750 (4.2%) / 2,135,767

Sentences 309,564 (4.1%) / 7,574,215

Tokens 7,431,996 (4.9%) / 152,561,733

III. LINGUISTIC EXPLORATION

In this section, we discuss how developers talk about
security in terms of the pragmatic linguistic characteristics
considered in our study: formality, informativeness, impli-
cature, politeness, and uncertainty. We provide a motivation
and a refined research question from RQ 1 for each metric
and its analysis. Formality, informativeness, implicature, and
politeness all have continuous scale from 0 to 1, whereas
uncertainty has a discrete scale with true and false being the
permitted values. In motivating each pragmatic feature, we
provide examples of security-related ((Shi) and (Slo)) and
non-security-related ((NShi) and (NSlo)) with high and low
values for the corresponding feature, respectively.

Previous work has applied sentiment analysis to developer
conversations [1]–[3], [7]–[9], however, sentiment is a seman-
tic characteristic of natural language; we limit our discussion
to pragmatic characteristics of language.

A. Formality

For Chromium, discovery of vulnerabilities is rewarded
with monetary bounties [10], so discussion between engineers
and researchers is common. Conveying the complex nuance
of security concerns to people of other backgrounds may
require more conversational etiquette. Alternatively, perhaps
the urgency with which security conversations need to be
held (e.g. in a zero-day situation) might result in forgoing
typical conversational etiquette. The formality of a sentence,
as discussed in Lahiri [11] and Heylighten et al. [12], is the
observance of etiquette in forming a sentence.

(Shi) “The hack attacks firmware, it subverts the TPM by persistent
callbacks to 0x0 address, and it is therefore persistent under
the guest and other user accounts.” (0.998)

(Slo) “I think, perhaps, I’ve got too much stuff to sync, so it’s just
stopping at some point.” (6.0e-6)

(NShi) “However, given the sensitive nature of this detection tech-
nology, it may occasionally identify non-malicious, legitimate
software programs that also share these behavioral charac-
teristics.” (0.999)

(NSlo) “If they remove every little feature we like about Chrome
(*cough* single-click selects all *cough*) and just say, ‘Use
an extension’, I might as well go back to using Firefox, or
hell, even IE9, as it’s looking pretty promising.” (2.5e-7)

Our previous work has shown that formality plays a large
role in whether or not a code review comment is acted-
upon [1]. We use the classification method from that study
to measure formality.

Thus, our research question for formality is:

RQ 1.1: Is security conversation more or less formal
than non-security conversation?

B. Informativeness

When developers communicate over bug reports, they are
examining highly detailed technical problems. A key step
in these conversations is the ability to arrive at a mutual
agreement. When security is involved, the stakes are high
and the possible scenarios become even more complex. The
metric informativeness, rooted in the cooperative principles of
Grice’s pragmatic theory [13], is one measure which captures
language that leads to mutual agreement. Informative language
is presented clearly, directly, and without ambiguity [11], [12].
The following examples exhibit varying levels of informative-
ness.

(Shi) “Alternatively attackers could impersonate the 802.1x net-
works a user’s device is configured to authenticate against
automatically, in order to observe responses and subsequently
perform offline brute-force attacks on the user’s password,
or to pass values through authenticating the attacker to the
802.1x protected network.” (1.000)

(Slo) “Any thoughts on the best way to solve this?” (5.3e-5)
(NShi) “The binary doesn’t actually work right (the bundle isn’t

completely right), but dropping the executable itself into a
GYP build gets reasonably close to working (some tests pass,
some crash) on the simulator.” (0.999)

(NSlo) “Please help, I don’t understand any of this!?!” (1.4e-5)

We use a classifier built on the manually annotated corpus
from Lahiri [11] to compute informativeness scores. Further
details on the classifier can be found in our previous work [1].

Thus, our research question for informativeness is:

RQ 1.2: Does security conversation exhibit more or less
informativeness than non-security conversation?

C. Implicature

Conveying context is a significant part of any conversa-
tion. In a bug report, developers must consider all kinds of
context, such as the system design, legacy systems, and the
development process. Discussion that lacks proper context
will be less clear, leading to misunderstandings, which is true
of both security and non-security conversations. Implicature,
like informativeness, is also rooted in Grice’s maxims [13],
and is a measure of how much context of a sentence is

missing [12], [14]. We used a corpus with manually annotated
implicature scores [11] to build a classifier that computes
implicature, where scores are continuous from 0–1, with 1
meaning the sentence is missing context and 0 meaning the
sentence is not missing context.

(Shi) “I don’t immediately see how my patch would’ve caused that
use-after-free, but I guess it’s possible.” (0.996)

(Slo) “The first incognito tab opened, for each Chrome profile,
creates a temporary in-memory profile and every subsequent
tab opened will share the same cookie jar - so the behavior
you describe in the second paragraph of #3 is working as
intended.” (3.8e-5)

(NShi) “It seems that something more concise or more obvious would
be better.” (0.999)

(NSlo) “Another issue I’m seeing is that with Chrome when I load
a new page or switch tabs the content doesn’t display inside
the view port until something dynamic happens, like the page
scrolls, I move my mouse over something, the content moves,
etc.” (3.3e-7)

In (Shi), the author references a patch that they submitted,
but little else; this sentence is missing a large portion of context
to understand exactly what is being said. Conversely, in (Slo)
the author gives a step-by-step description of the sequence of
events leading to the behavior in question and further pinpoints
exactly where that behavior is described; there is minimal extra
context required to understand the comment.

Thus, our research question for implicature is:

RQ 1.3: Does security conversation exhibit more or less
implicature than non-security conversation?

D. Politeness

The urgency of zero-day security bugs, or the stakes being
high, may lead to politeness being ignored. Alternatively,
politeness may be needed in this professional environment
to convince developers to take security seriously. We utilized
a corpus of over 10,000 sentences which were manually
annotated for politeness and the corresponding classification
model to measure politeness within our bug report corpus [15].
The following sentences show developers being polite and
impolite.

(Shi) “I would appreciate if you could try this out and see if you
can find a place where this still breaks.” (0.785)

(Slo) “A bug for sure but probably not worth the effort to fix, given
that it’s not a security issue, and that it’s not something that
well-intentioned PDFs will accidentally hit, so not really a
stability issue either.” (0.155)

(NShi) “Hi, thanks for your report, I think this is working as intended
and Firefox 3.5, IE7, IE8 behaves the same as Chrome,
Jungshik, could you please confirm?” (0.947)

(NSlo) “Why don’t you simply accept this fact?” (0.088)

Consider sentences (Shi) and (Slo) above. In the former,
the writer is polite when asking their peer(s) to look into a
piece of buggy code. In the latter, the writer is not being polite;
they are simply disputing any potential concerns brought up
earlier in the conversation.

Thus, our research question for politeness is:

RQ 1.4: Does security conversation exhibit more or less
politeness than non-security conversation?

E. Uncertainty

Uncertainty, according to Vincze [16], manifests itself
as the lack of information required to confirm whether a
proposition is true. Vincze further categorized uncertainty as:

• Epistemic: The proposition is possible, based on our
existing knowledge of the universe, but its truth-value
cannot be determined.

• Doxastic: The proposition is assumed to be true or false,
but its truth-value cannot be determined.

• Investigative: The proposition is in the process of having
its truth-value determined.

• Conditional: The proposition is true or false based on the
truth-value of another proposition.

Consider the examples of sentences from security (S) and
non-security (NS) bugs shown below to understand the subtle
differences between these four types of semantic uncertainty.
The subscript indicates one of the aforementioned types of
semantic uncertainty.

(SE) “I expect that the advertiser account which owns these Flood-
lights belongs to someone at Google, but it’s still quite trou-
bling.”

(SD) “If we fix it to only work over HTTPS and against whitelisted
hosts for PPAPI (for ChromeOS) would that alleviate the need
to fix all permutations of crash-from-bad-scripts as demon-
strated here?”

(SI) “Well, I haven’t installed Java to test, but I know our plugin
loader can never call CreateProcess for a third-party plugin
(and as I explained LoadLibrary cannot exhibit this behavior).”

(SC) “If we fix it to only work over HTTPS and against whitelisted
hosts for PPAPI (for ChromeOS) would that alleviate the need
to fix all permutations of crash-from-bad-scripts as demon-
strated here?”

(NSE) “That’s really awkward...and seems like it should be fixed
before we declare Yosemite layout tests to be fixed.”

(NSD) “I think we’ve just had this wrong for years.”
(NSI) “The trace already shows whether hitTest was called from a

mouse event or javascript.”
(NSC) “Presently if the screen is locked, we allow it to dim, screen

off, and suspend, even if the screensaver is a motion video.”

We used the corpus from Farkas et al. [17] and a re-
implementation of the classifier from Vincze [16], which
utilized characteristics of semantic uncertainty from Szarvas
et al. [18], to detect uncertainty in bug conversations. Further
implementation details can be found in our previous work [1].

Thus, our research question for uncertainty is:

RQ 1.5: Is security conversation more or less likely to
express uncertainty than non-security conversation?

IV. RESULTS FROM EXPLORATORY ANALYSIS

To answer RQ 1 we assessed association using the Mann–
Whitney–Wilcoxon (MWW) test to compare formality, infor-
mativeness, implicature, and politeness for security and non-
security bug comments. As reported in Table II, all of our
continuous-valued metrics are statistically significant with neg-
ligible effect sizes, meaning that while there is a statistically
significant difference in the distribution of formality, infor-
mativeness, implicature, and politeness between security and
non-security bugs, the magnitude of difference is negligible. A
visual comparison of the distributions of these metrics showed

TABLE II: MWW test results for continuous metrics

Metric Outcome
Minimum Formality S < NS*** (N)

Maximum Formality S < NS*** (N)

Maximum Informativeness S < NS*** (N)

Maximum Implicature S > NS*** (N)

Minimum Politeness S > NS*** (N)

Maximum Politeness S > NS*** (N)

Legend *** p < 0.001; (N) δ < 0.147

TABLE III: χ2 test results for uncertainty

Uncertainty
% Comments

Security Non-Security
Epistemic*** 0.87% 18.22%

Doxastic*** 0.45% 8.99%

Investigative*** 0.12% 2.53%

Conditional*** 0.82% 18.55%

Uncertain*** 1.58% 35.56%

Legend *** p < 0.001

that the distributions are nearly identical for security and non-
security conversations, which is in agreement with Cliff’s δ.

We also examined the independence of uncertainty types
for security and non-security bug comments using the χ2

test. We found that all four types of uncertainty—as well as
the aggregation of the four, indicating the presence of any
uncertainty—were statistically significant and not independent
(i.e. associated) (see Table III).

The MWW and the χ2 tests indicate that all of the metrics
are associated with security conversations at a statistically
significant level. However, the negligible effect sizes reveal
that when considered individually, the metrics are not strongly
associated with security conversations.

In summary, our results indicate:

RQ 1.1: Developers are less formal in security conver-
sations than in non-security conversations.
RQ 1.2: Security conversations have a lower maximum
informativeness than non-security conversations.
RQ 1.3: Security conversations are more implicative
than non-security conversations.
RQ 1.4: Developers are more polite in security conver-
sations than in non-security conversations.
RQ 1.5: Security conversations are less likely to exhibit
uncertainty than non-security conversations, regardless
of the type of uncertainty.

We found that, while discussing security, developers tend
to be less formal and less informative, while being certain,
polite, and implicative. We see the less formal and more polite
nature of security conversations to encourage developers with
less experience to express their thoughts. High implicature
(i.e. lack of sufficient context) might suggest that security,
being nuanced and multifaceted, is difficult to discuss with
enough relevant detail to ensure mutual understanding between
developers.

V. SUMMARY & FUTURE WORK

By understanding the pragmatic characteristics of security
conversations we hope to provide developers with insights and
tactics to pull security to the forefront of their conversations.
We found that both security and non-security conversations in
bug reports exhibit varying degrees of formality, informative-
ness, implicature, politeness, and uncertainty. The differences
were small, but statistically significant. While the pragmatic
characteristics explored in this work are not significant dis-
criminators between security and non-security conversations,
the results of this study warrant further examination into what
we believe is an information-rich corpus. We have released
the corpus used in this work to encourage further linguistic
analysis.

REFERENCES

[1] B. S. Meyers, N. Munaiah, E. Prud’hommeaux, A. Meneely, C. Alm,
J. Wolff, and P. K. Murukannaiah, “A dataset for identifying actionable
feedback in collaborative software development,” in Meeting for the
Assn. for Computational Linguistics, Melbourne, Australia, 2018.

[2] M. Rahman, C. K. Roy, and R. Kula, “Predicting Usefulness of Code
Review Comments Using Textual Features and Developer Experience,”
in Int’l Conf. on Mining Software Repositories, ser. MSR ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 215–226. [Online].
Available: https://doi.org/10.1109/MSR.2017.17

[3] A. Bosu, M. Greiler, and C. Bird, “Characteristics of Useful Code
Reviews: An Empirical Study at Microsoft,” in Int’l Conf. on Mining
Software Repositories, may 2015, pp. 146–156.

[4] H. Dawson and M. Phelan, Eds., Language Files: Materials for an
Introduction to Language and Linguistics. Ohio State U. Press, 2016.

[5] K. Denham and A. Lobeck, Linguistics for Everyone: An Introduction.
Cengage Learning, 2013.

[6] B. S. Meyers, N. Munaiah, A. Meneely, and E. Prud’hommeaux,
“Security bug conversations,” March 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.2595071

[7] E. Guzman, D. Azócar, and Y. Li, “Sentiment Analysis of Commit
Comments in GitHub: An Empirical Study,” in Int’l Conf. on Mining
Software Repositories. New York, NY: ACM, 2014, pp. 352–355.

[8] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and Emotion:
Sentiment Analysis of Security Discussions on GitHub,” in Int’l Conf.
on Mining Software Repositories. NY, NY: ACM, 2014, pp. 348–351.

[9] N. Munaiah, B. S. Meyers, C. Alm, A. Meneely, P. K. Murukannaiah,
E. Prud’hommeaux, J. Wolff, and Y. Yu, “Natural language insights
from code reviews that missed a vulnerability,” in Int’l Symposium on
Engineering Secure Software and Systems. Bonn, Germany: Springer,
August 2017, pp. 70–86.

[10] Google, “Chrome Rewards - Application Security - Google,” https:
//www.google.com/about/appsecurity/chrome-rewards/index.html, [On-
line] Accessed: 02-07-2019.

[11] S. Lahiri, “SQUINKY! A Corpus of Sentence-level Formality, Informa-
tiveness, and Implicature,” CoRR, vol. abs/1506.02306, 2015.

[12] F. Heylighen and J. Dewaele, “Formality of language: definition, mea-
surement and behavioral determinants,” 1999.

[13] H. Grice, P. Cole, J. Morgan et al., “Logic and conversation,” Syntax
and semantics, pp. 41–58, 1975.

[14] C. Potts, The logic of conventional implicatures. Oxford University
Press on Demand, 2005, no. 7.

[15] C. Danescu-Niculescu-Mizil, M. Sudhof, D. Jurafsky, J. Leskovec, and
C. Potts, “A computational approach to politeness with application to
social factors,” 2013.

[16] V. Vincze, “Uncertainty Detection in Natural Language Texts,” Ph.D.
dissertation, University of Szeged, 2014.

[17] R. Farkas, V. Vincze, G. Móra, J. Csirik, and G. Szarvas, “The conll-
2010 shared task: learning to detect hedges and their scope in natural
language text,” in Conf. on Computational Natural Language Learning—
Shared Task. Assn. for Computational Linguistics, 2010, pp. 1–12.

[18] G. Szarvas, V. Vincze, R. Farkas, G. Móra, and I. Gurevych, “Cross-
genre and cross-domain detection of semantic uncertainty,” Computa-
tional Linguistics, vol. 38, no. 2, pp. 335–367, 2012.

