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Abstract. Engineering secure software is challenging. Software devel-
opment organizations leverage a host of processes and tools to enable
developers to prevent vulnerabilities in software. Code reviewing is one
such approach which has been instrumental in improving the overall qual-
ity of a software system. In a typical code review, developers critique a
proposed change to uncover potential vulnerabilities. Despite best efforts
by developers, some vulnerabilities inevitably slip through the reviews.
In this study, we characterized linguistic features—inquisitiveness, senti-
ment and syntactic complexity—of conversations between developers in
a code review, to identify factors that could explain developers missing
a vulnerability. We used natural language processing to collect these lin-
guistic features from 3,994,976 messages in 788,437 code reviews from
the Chromium project. We collected 1,462 Chromium vulnerabilities to
empirically analyze the linguistic features. We found that code reviews
with lower inquisitiveness, higher sentiment, and lower complexity were
more likely to miss a vulnerability. We used a Näıve Bayes classifier to
assess if the words (or lemmas) in the code reviews could differentiate
reviews that are likely to miss vulnerabilities. The classifier used a sub-
set of all lemmas (over 2 million) as features and their corresponding
TF-IDF scores as values. The average precision, recall, and F-measure
of the classifier were 14%, 73%, and 23%, respectively. We believe that
our linguistic characterization will help developers identify problematic
code reviews before they result in a vulnerability being missed.

1 Introduction

Vulnerabilities in software systems expose its users to the risk of cyber attacks.
The onus of engineering secure software lies with the developers who must as-
sess the potential for an attack with each new line of code they write. Over



the years, software development teams have transitioned toward a proactive
approach to secure software engineering. Modern day software engineering pro-
cesses now include a host of security-focused activities from threat modeling
during design to code reviews, static analysis, and unit/integration/fuzz testing
during development. The code review process, in particular, has been effective
in uncovering a wide variety of flaws in software systems, from defects [27] to
vulnerabilities [7, 9, 29]. Code reviews have now become such an essential part
of software development lifecycle that large software development organizations
like Google [13] and Microsoft [25] mandate code review of every change made
to the source code of certain projects.

Developers make mistakes. Code reviews provide an opportunity for these
mistakes to be caught early, preventing them from becoming an exploitable vul-
nerability. Done in an systematic way, code reviews have the potential to uncover
almost all defects in a software system [14].

Code reviews contain a wealth of information from which one can gain valu-
able insights about a software system and its developers. Conversations between
developers participating in a code review often represent instances of construc-
tive criticism and a collaborative effort to improve the overall quality of the
software system. However, in some cases, the same conversations could contain
clues to indicate potential reasons for a mistake, such as a vulnerability, to have
been missed in the review. As with software development, code reviews involve
humans—the developers. Developers participating in code reviews could exhibit
a wide variety of socio-technical behaviors; some developers may be verbose,
inquisitive, overly opinionated, and security-focused, while others may be suc-
cinct, cryptic, and uncontroversial. The natural language analysis of code review
conversations can help identify these intrinsic (linguistic) characteristics and un-
derstand how they may contribute to the likelihood of a code review missing a
vulnerability. Furthermore, we can use automated natural language processing
techniques to identify these characteristics on a massive scale aiding developers
by highlighting problematic code reviews sooner.

Our goal in this study is to characterize the linguistic features that contribute
to the likelihood that a code review has missed a vulnerability. We empirically
analyzed 3,994,976 messages across 788,437 code reviews from the Chromium
project. We addressed the following research questions:

RQ1 Feedback Quality Do linguistic measures of inquisitiveness, sentiment,
and syntactic complexity in code reviews contribute to the likelihood that a
code review has missed a vulnerability?

RQ2 Lexical Classifier Can the words used differentiate code reviews that
have missed a vulnerability?

The remainder of this paper is organized as follows: we begin with brief
summary of prior literature closely related to ours in Section 2. In Section 3,
we describe the approach used to obtain the data from a variety of sources,
collect various metrics from the data, and statistically analyze the metrics. We
present our results in Section 4, highlight some of the limitations in Section 5,
and conclude the paper with a brief summary in Section 6.



2 Related Work

Code reviews are used widely in the software engineering field with the goal of
improving the overall quality of software systems. Despite the popularity and
evidence justifying the benefit of code reviews [5, 27], some research suggests
that code reviews are not always carried out properly, diminishing their utility
in the software development cycle [14, 15]. The focus of prior research on code
reviews has been to understand attributes of code reviews that express their
usefulness [8] and identify aspects of the code review process that enable timely
conclusion of reviews [4]. While some studies from prior literature [5,16,29] have
questioned the effectiveness of code reviews in finding vulnerable code, these
studies do not provide an insight into the factors that may have led to the code
reviews missing vulnerabilities.

Bosu and Carver [7], who found evidence to support the notion that code
reviews are effective at uncovering vulnerabilities, used text mining techniques
to compile a list of keywords related to various types of vulnerabilities. Using a
similar approach, Pletea et al. [35] performed sentiment analysis of comments on
GitHub pull requests and found that security-oriented comments were typically
more negative. Guzman et al. [22] performed similar analysis but with correlating
sentiment in commit messages with social and environmental factors. While these
studies present interesting findings, they still do not explain why code reviews
often overlook vulnerabilities. To address this question, we not only use sentiment
analysis and lexical information, but also explore more complex natural language
processing approaches for analyzing code reviews at the structural and word
frequency distribution level. To the best of our knowledge, our work is one of
the first to attempt analyses of this nature, especially in the context of a large-
scale data set of 788,437 code reviews from the Chromium project.

3 Methodology

In the subsections that follow, we describe the methodology used in the empirical
analysis. At a high-level, our methodology may be organized into three steps:
(1) data collection, (2) metric collection, and (3) statistical analysis.

3.1 Data Collection

Data Sources The data set used in the empirical analysis is a collection of code
reviews with their associated messages and metadata (bug and vulnerability
identifiers), which was obtained from a variety of managed sources. The code
reviews, specifically, the messages posted by reviewers, were the central pieces of
information in our data set. The Chromium project uses Rietveld4 to facilitate
the code review process. We used Rietveld’s RESTful API to retrieve all code
reviews (2008–2016) for the Chromium project as JSON formatted documents.

4 https://codereview.chromium.org/



A typical code review in the Chromium project is created when a developer
wishes to have changes to the source code integrated with the Chromium reposi-
tory. The group of files changed is called a patchset. A code review may have one
or more patchsets depending on the changes the developer had to implement to
address the comments in the code review. In retrieving the code reviews, we also
retrieved any associated patchsets. The patchsets were used to identify the files
that were reviewed and those that were committed as part of the code review.

The goal in our study is to characterize the linguistic features of code re-
views and their relationship with the likelihood of missing a vulnerability. A
code review is said to have missed a vulnerability if at least one of the files re-
viewed was later fixed for a vulnerability. Therefore, the key piece of information
needed in the analysis is a mapping between code reviews and vulnerabilities.
In the Chromium project, the association between code reviews and vulnera-
bilities is achieved through an issue tracking system. The Chromium project
tracks bugs using Monorail.5 The report of bugs that resulted in the resolu-
tion of a vulnerability have the Common Vulnerabilities and Exposure (CVE)
identifier of the vulnerability as a label. We used the bulk export feature sup-
ported by Monorail’s web interface to download, in CSV format, a list of all
bugs in the Chromium project. All code reviews that have bugs associated with
them are expected to have the bug identifier(s) mentioned (using the template:
BUG=<bug id>,<bug id>) in the description of the reviews. We parsed the code
review description to identify the bug(s) that were associated with a code review.

We compared the vulnerabilities obtained from Monorail to those obtained
from the National Vulnerability Database (NVD6) to ensure completeness. We
found a small set of vulnerabilities that were resolved by the Chromium project
team but no record of a mapping between the vulnerability and a bug existed
in Monorail. We manually identified the mapping between the vulnerability and
bug using posts from the Chrome Releases Blog7 and the references list from
the vulnerability report on NVD.

Data Annotations The code reviews in our data set were annotated with
labels to enable us to group reviews into categories that were relevant to our
empirical analysis. In the subsections that follow, we introduce these labels and
describe the approach we used to assign those labels to code reviews.

(1) Code Reviews that Fixed Vulnerabilities - We used the label fixed vulnera-
bility to identify code reviews that facilitated the review of a fix for a vulner-
ability. In our data set, we annotated all code reviews that were associated
with a bug that resolved a vulnerability with the fixed vulnerability label.
The fixed vulnerability code reviews were crucial in identifying the files that
were reviewed (and possibly committed) in resolving a vulnerability. Intu-
itively, the fixed vulnerability code reviews represent the conversations that

5 https://bugs.chromium.org/p/chromium
6 https://nvd.nist.gov/
7 https://chromereleases.googleblog.com/



the developers should have had in the past to potentially discover and resolve
vulnerabilities.

(2) Code Reviews that Missed Vulnerabilities - We used the label missed vul-
nerability to identify code reviews that potentially missed a vulnerability.
We identify missed vulnerability code reviews by searching for code reviews
that reviewed a file that was later fixed for a vulnerability. In our study, We
followed a two step process to identify missed vulnerability code reviews:

Step 1 For each fixed vulnerability code review, identify all files committed.

Step 2 For each committed file, identify all code reviews, created before the
review in question, that included the file.

Intuitively, the missed vulnerability code reviews represent the missed op-
portunities in which vulnerabilities could have been discovered. We base our
intuition on prior research by Meneely et al. [30], who found that vulnera-
bilities tend to exist in software for over two years before being discovered.
While no single code review can be blamed for missing a vulnerability, we
believe that, in aggregate, the missed vulnerability code reviews constitute
an opportunity in which the vulnerability could have been discovered.

(3) Neutral Code Reviews - We used the label neutral to identify code reviews
that neither reviewed the fix for a vulnerability nor missed a vulnerability.
The neutral code reviews serve as the control group in our analysis. The
choice of using the generic label “neutral” is intentional; one cannot defini-
tively say that a code review did not miss a vulnerability since there may be
latent vulnerabilities in the source code that are yet to be discovered [30].
Intuitively, the set of neutral reviews could potentially include those reviews
in which reviewers may have overlooked a vulnerability.

Summary The data set used in the empirical analysis consists of 788,437 code
reviews containing a total of 3,994,976 messages posted by 8,119 distinct par-
ticipants. On average, each review had 2 participants, reviewed 9 files, had 6
messages, and lasted 67 days. The data set also includes 436,191 bugs and 1,462
vulnerabilities. Among the code reviews, 877 were labeled as fixed vulnerability,
92,030 were labeled as missed vulnerability and 695,530 were labeled as neutral.

3.2 Metric Collection

In the subsections that follow, we describe the metrics used to address the re-
search questions and the approaches used to extract these metrics. All metrics
are defined at the message level; however, we aggregate them at the review level
for empirical analysis. We used the Natural Language Toolkit (NLTK) [6], the
Stanford CoreNLP [26], and the Speech Processing & Linguistic Analysis Tool
(SPLAT) [32] in collecting these metrics from the code review messages.

Inquisitiveness Uncovering security flaws in a software system involves a spec-
ulative thought process. A reviewer must consider the possibility that even the



most unlikely scenario could have an impact on the piece of code being reviewed.
The inquisitiveness metric is an attempt to quantify this speculative type of con-
versation in code reviews.

The inquisitiveness metric is estimated by counting the number of questions
in a code review message. We have used a näıve approach to estimate the value
of this metric by the frequency of the symbol “?” in the message text. The as-
sumption here is that the number of questions in a message is correlated with
the number of occurrences of “?”. We validated this assumption by manually
counting the number of questions in a sample of 399 code review messages ob-
tained by random stratified sampling of messages with zero, one, and more than
one occurrences of the symbol “?”. In the manual analysis, we not only looked
for the “?” symbol but also read the content of the messages to consider sen-
tences phrased as a question but not terminated by “?”. For instance, here is
an excerpt from a message that contains a question (terminated by “?”) and
a sentence that is phrased as a question but without being terminated by “?”:
“I’m not sure ... immutable. Is it OK ... is called? If it’s OK, why we don’t ...
of MIDIHost.”. We used Spearman’s rank correlation co-efficient (ρ) to quan-
tify the correlation between the manually estimated number of questions and
the number of occurrences of the symbol “?”. We found a strong, statistically
significant (p-value� 0.01), positive correlation with ρ = 0.93.

In our approach to calculating the inquisitiveness metric, we used NLTK to
tokenize the data (i.e. break up sentences into words, separating out punctu-
ation marks) and to compute the frequency of “?”. In the manual analysis of
the 399 code review messages, we found that the inquisitiveness metric tends
to over-estimate the actual number of questions in cases when a single ques-
tion is terminated with multiple question marks or when a URL is incorrectly
terminated at the “?” by the NLTK tokenizer. The inquisitiveness metrics also
misses questions if they are not terminated by “?”. We, however, found only a
few instances of these cases in our manual analysis.

We chose to use the seemingly simplistic approach rather than more sophis-
ticated ones such as regular expressions or syntactic parse trees because, unlike
traditional natural language, code review messages tend to be informal and,
sometimes, fragmented. Furthermore, the notion of a question in code review
messages tends to go beyond the message itself, requiring additional context
such as the line of source code that the sentence in a message is associated with.

The number of questions is likely to be positively correlated with the size
of the message. We accounted for this likelihood by expressing the metric as
inquisitiveness per sentence in the message. We used Stanford CoreNLP to split
a message into sentences to count the number of sentences.

Sentiment Conversations about the security of a software system tend to have
a non-neutral sentiment [35]. The sentiment group of metrics is an attempt
to capture the sentiment associated with code review messages. Each of the
sentiment metrics is calculated as the proportion of sentences in a code review



message exhibiting that sentiment. We used proportion of sentences, rather than
the actual number of sentences, to control for message size.

We used the sentiment analysis model [39] from the Stanford CoreNLP to
identify the sentiment expressed in sentences. The model uses information about
words and their relationships to classify sentences into one of five sentiment
classes: very positive, positive, neutral, negative, and very negative. In our study,
we merge very negative and negative into a single negative class and very posi-
tive and positive into a single positive class. Furthermore, we do not consider the
neutral sentiment in the analysis of the sentiment metrics. In effect, we only con-
sider the positivity (proportion of positive sentiment sentences) and negativity
(proportion of the negative sentiment sentences) in the analysis.

Term-Frequency Inverse-Document-Frequency (TF-IDF) Widely used
in the field of information retrieval [38], TF-IDF is a measure of the relative
importance of a term (word) within a document with the term’s frequency (TF)
in that document normalized by its frequency in the corpus to which that doc-
ument belongs (inverse document frequency, IDF). In our data, a single code
review is a document and the corpus is the collection of all code reviews.

There are many ways to calculate TF-IDF. We have used the approach im-
plemented by the TextCollection8 class of NLTK to compute the TF-IDF metric.
In this approach, the TF-IDF of a term (t) in a document (d) is computed as
tf -idf(t,d) = tf(t,d) × dft, where tf(t,d), the term frequency, is the ratio of the
frequency of the term t (in document d) to the total number of terms in d and
dft, the document frequency, is the natural logarithm of the ratio of the number
of documents in the corpus to the number of documents containing the term t.

As with the inquisitiveness metric, we used NLTK to tokenize code review
messages, but we perform a key preprocessing of the tokens before computing
the TF-IDF: map token to base form, or lemma. We compute the TF-IDF of
lemmas instead of tokens to account for morphological variation (i.e., suffixes we
add to words to express different grammatical functions); the words compiles,
compiling and compiled, for instance, are all forms of the lemma compile.

Syntactic Complexity Software engineers participating in a code review are
required to process a considerable amount of information in reviewing a piece of
code. The structural complexity of the language used in code review messages
could lead a developer to misunderstand a comment and consequently intro-
duce a spurious change. The syntactic complexity group of metrics is aimed at
quantifying the complexity that may be in code review messages.

A variety of metrics have been proposed to quantify the syntactic complex-
ity of natural language sentences. While some of these metrics focus simply on
sentence or utterance length [34] or on part of speech information, others use
information about the structure of sentences that can be extracted from syn-
tactic parses or trees. In particular, there are several parse-based measures of

8 http://www.nltk.org/api/nltk.html#nltk.text.TextCollection



complexity relying on the assumption that deviations from a given language’s
typical branching structure (in the case of English, right branching) are indica-
tive of higher complexity [18,42]. In our study, we use three measures of syntactic
complexity to quantify the complexity of code review messages: (1) Yngve score
(2) Frazier score, and (3) propositional density. We describe the three metrics
in greater detail below. The implementation of these metrics, which are adapta-
tions of the algorithms described in Roark et al. [37] and Brown et al. [10], have
been borrowed from the previously mentioned open-source tool SPLAT [32].

– Yngve Score: The Yngve score [42] is a measure of syntactic complexity that
is based on cognitive load [28, 40], specifically on the limited capabilities of
the working memory [2, 3, 33]. The Yngve score is computed using the tree
representation of a sentence obtained by syntactically parsing the sentence.
The tree is scanned using a pushdown stack in a top-down, right-to-left
order. For every level of the tree, branches are labeled starting with 0 for
the rightmost branch and incrementing by 1 as the parse progresses toward
the left branch. Each word is then assigned a word score by summing up
the labels for each branch in the path from the root node to the word (leaf
node) as seen in Figure 1.
We used the Stanford CoreNLP in conjunction with NLTK to obtain syn-
tactic parse trees for code review messages. In this study, we use the mean
Yngve score over all words in a sentence. The Yngve score is then averaged
for each sentence in a message and for each message in a code review. See
Table 1 for sample Yngve scores.

Fig. 1. Parse tree with Yngve (Y) and Frazier (F) scores on the solid and dotted lines,
respectively. Word scores are boxed, with the mean score for the sentence to the right.

– Frazier Score: The Frazier score is similar to the Yngve score with one key
distinction: while Yngve score is a measure of the the breadth a syntactic
tree, Frazier score measures of the depth of the tree [37]. The Frazier score
emphasizes embedded clauses (sub-sentences) based on the notion that the
number of embedded clauses is associated with greater complexity [18–21].



The algorithm to compute the Frazier score of a sentence is similar to that
used to compute its Yngve score. Starting with the leftmost leaf node, each
branch leading up to the root of an embedded clause (sentence node) is
labeled as 1, with the exception of the branch on the uppermost level of the
tree that leads directly to the sentence node, which is labeled as 1.5. This
process is repeated for every leftmost leaf node. Labeling stops when the
path upward from the leaf node reaches a node that is not the leftmost child
of its parent, as shown with dotted lines in Figure 1.

– Propositional Density: The propositional density metric (often referred to
as p-density) is a socio-linguistic measure of the number of assertions in a
sentence. For example, Chomsky’s famous sentence “colorless green ideas
sleep furiously [12]” makes two assertions: (1) colorless green ideas sleep,
and (2) they do it furiously. Part-of-speech tags and word order are used to
determine likely propositions, and a series of rules is applied to determine
how many propositions are expressed in a sentence [10]. After propositions
have been identified, p-density is simply the ratio of the number of expressed
propositions in a sentence to the number of words in that sentence.

Table 1. Sample sentences with syntactic complexity scores

Sentence Yngve Frazier P-density

This CL will add a new H264 codec to the SDP negotia-
tion when H264 high profile is supported.

2.056 0.722 0.278

There is a 3.9% decrease in initial load time observed. 1.500 0.750 0.200

fixed as spec says 0.750 1.500 0.750

lgtm then 0.500 1.750 0.500

Although sentence length can serve as a proxy for syntactic complexity, we
chose to use more sophisticated metrics because these metrics take the struc-
ture of the sentence into consideration. We did, however, assess the correla-
tion between our complexity metrics, aggregated at the message level, and mes-
sage length, expressed as number of words. We found a statistically significant
(p-value � 0.01) positive correlation (Spearman’s ρ = 0.69) between Yngve
score and message length. We normalized the Yngve score metric using mes-
sage length to account for this correlation. The other two syntactic complexity
metrics, Frazier score and propositional density, were not significantly correlated
with message length in our data.

3.3 Analysis

In the subsections that follow, we describe the various statistical methods used
in the empirical analysis of the metrics proposed in our study. All statistical
tests were executed with R version 3.2.3 [36].



Correlation We used Spearman’s rank correlation coefficient (ρ) to assess the
pairwise correlation between the various metrics that were introduced earlier.
We considered two metrics to be strongly correlated if |ρ| >= 0.70 [24].

Association We used the non-parametric Mann-Whitney-Wilcoxon (MWW)
test for association between the various metrics and the code reviews that missed
a vulnerability. We assume statistical significance at α = 0.05. We compare mean
of the populations to assess if the value of a metric tends to be higher or lower
between two populations (neutral and missed vulnerability code reviews).

Classification To assess if the words used in code reviews can be a differentiator
between neutral and missed vulnerability code reviews, we built a Näıve Bayes
classifier with lemmas of the words from code reviews as features and their
corresponding TF-IDF as values. A typical code review could have hundreds
of distinct lemmas; to constrain the number of features in the model, we used
the criteria described below to filter the lemmas before attempting to build the
classifier.

(1) We only considered alphanumeric lemmas that were fewer than 13 characters
in length. We chose 13 characters to be a reasonable limit for lemma length
because over 99% of the all words in the Brown [17], Gutenberg [23], and
Reuters [1] natural language data sets are fewer than 13 characters in length.

(2) We only considered the top ten lemmas, ordered by the TF-IDF values, in
each code review. In other words, we only considered the ten most important
lemmas in code reviews.

In addition to constraining the number of features, we also had to constrain
the number of observations (code reviews) in the data set used to build the
classifier. We used random sampling to select 5% of neutral and 5% of missed
vulnerability code reviews. We repeated the random sampling to generate ten
(possibly) different data sets to be used to build the classifier. We used the
information gain [41] metric to assess the relevance of features in differentiating
the code reviews and removed all features with a zero information gain. We
then used the relevant features to train and test a Näıve Bayes classifier using
10×10-fold cross validation. We used SMOTE [11] to mitigate the impact of the
imbalance in the number of neutral and missed vulnerability code reviews on the
performance of the classifier. We used precision, recall and F-measure metrics
to assess the performance of the classifier.

4 Results

In the subsections that follow, we address our research questions through the
empirical analysis of our metrics.



4.1 RQ1 Feedback Quality

Question: Do linguistic measures of inquisitiveness, sentiment, and syntactic
complexity in code reviews contribute to the likelihood that a code review has
missed a vulnerability?

We began the analysis by evaluating the correlation between the metrics
themselves to understand if any of the metrics were redundant due to high cor-
relation. The correlation analysis did not reveal any strong correlations between
the metrics and the highest value of |ρ| was 0.45, between inquisitiveness and
Yngve score metrics. We then used the MWW test to assess the strength of
association between the metric and the likelihood of a code review missing a
vulnerability. The results are shown in Table 2, with all associations statistically
significant at least p-value < 0.01. Shown in Figure 3 in the Appendix are the
comparative box plots of the inquisitiveness, sentiment, and complexity metrics.

Table 2. Mann-Whitney-Wilcoxon (MWW) test outcome for association between the
linguistic measures and the likelihood of a code review missing a vulnerability

Metric p-value Meanneutral Meanmissed

Inquisitiveness 3.28e−12 0.1785 0.1711

Negativity < 2.2e−16 0.3707 0.4091

Positivity < 2.2e−16 0.0625 0.0783

Yngve Score < 2.2e−16 0.0498 0.0442

Frazier Score 0.0031 0.8568 0.8548

Propositional Density 1.77e−124 0.2634 0.2708

These results reveal some interesting insights into the nature of code reviews
that have missed vulnerabilities. First, the lower inquisitiveness values in code
reviews that missed a vulnerability suggest that the participants in these reviews
may not have been as actively trying to unearth flaws. The approach to uncover-
ing security vulnerabilities requires review participants to question the behavior
of the code being reviewed in scenarios that are unlikely but still plausible.

Code reviews with lower inquisitiveness i.e. fewer questions per sentence tend
to miss vulnerabilities.

Secondly, participants in code reviews that missed vulnerabilities expressed a
higher degree of both positive and negative sentiment. The higher negativity in
code reviews that missed a vulnerability confirms the results observed by Pletea
et al. [35] in security-specific discussions in GitHub pull requests. However, the
higher positivity in code reviews that missed a vulnerability is interesting because
it seems that the conversation may have started on a negative sentiment but



culminated on a positive sentiment, or vice versa. We may have to chronologically
analyze messages to better understand the evolution of sentiment.

Code reviews with higher sentiment, regardless of the polarity of that senti-
ment, tend to miss vulnerabilities.

Lastly, the complexity metrics, specifically Yngve and Frazier scores, show
that code reviews that missed a vulnerability tend to be less complex. While the
result may seem counterintuitive, the lack of complexity could be an indicator
that the code review conversation may be lacking substance. The propositional
density metric, on the other hand, is higher for code reviews that missed a
vulnerability indicating that those code reviews tend to have more assertions.

Code reviews with lower complexity in terms of Yngve and Frazier and higher
complexity in terms of propositional density tend to miss vulnerabilities.

4.2 RQ2 Lexical Classifier

Question: Can the words used differentiate code reviews that have missed a vul-
nerability?

In RQ1, we found that the inquisitiveness, sentiment, and syntactic complex-
ity in code reviews are associated with the likelihood of a code review missing
a vulnerability. In this research question, however, we wanted to understand if
the words used in the code reviews itself was different between reviews that were
neutral and those that missed a vulnerability.

We computed the TF-IDF of the lemmas of the words used in a code review,
and using these features, built a classifier to identify code reviews as neutral or
missed vulnerability. Each random sample of data used to build the classifier
contained 39,377 code reviews and an average of 25,652 features. Shown in Ta-
ble 3 is the total number of features and the number of those features deemed
relevant (i.e. non-zero information gain) in each of the ten random samples.

Table 3. Number of relevant features in each of the ten randomly sampled sets of code
reviews

Sample Set 1 2 3 4 5 6 7 8 9 10

# Features 25,636 25,535 25,456 25,550 25,761 25,805 25,592 25,709 25,651 25,827

# Relevant 1,092 889 959 885 910 1,012 986 910 1,091 898

We incrementally selected increasing number of relevant features to build
and evaluate the performance of a Näıve Bayes classifier. Figure 2 shows the
distributions of precision, recall, and F-measure obtained from each of the ten
random samples for varying number of relevant features selected. As seen in the



figure, the classifier built with 18 relevant features performs the best in terms of
F-measure. The average precision, recall, and F-measure of the best performing
classifier was 14%, 73%, and 23%, respectively. We note that, in classifying code
reviews that are likely to miss a vulnerability, a higher recall is desired even at
the cost of lower precision [31] since the cost of revisiting a few misclassified
reviews is relatively small when compared to the cost of a missed vulnerability.

Precision Recall F−measure
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Fig. 2. Distribution of classifier performance metrics—precision, recall, and F-
measure—obtained from ten random samples of code reviews for varying number of
relevant features used in training the classifier

The ability of our classifier to differentiate between neutral and missed vul-
nerability code reviews indicates that the distribution of words used in these
two types of code reviews is indeed different. In a code review framework, such a
classifier could be used to identify code reviews that are potentially missing vul-
nerabilities. The development team could then revisit these flagged code reviews
to ensure that the necessary steps are taken to uncover any latent vulnerabilities.

Yes. The accuracy of our classifier indicates that the words used in code review
can be a differentiator between neutral and missed vulnerability code reviews.

5 Limitations

The scale of our data set posed certain computational limitations, specifically in
the process of building a lexical classifier. We used the lemma of words in the
code review as features in the lexical classifier, however, our data set contains
2,089,579 unique lemmas obtained through lemmatization of 2,197,114 unique
words. An attempt to build a classifier using the entire data set 788, 437 ×
2, 089, 579 seemed intractable. We overcame this limitation by filtering lemmas
by length and non-alphanumeric characters, by randomly sampling a small per-
centage of code reviews, and by selecting the top 10 lemmas by their relative



importance. We mitigated the arbitrariness in the sampling process by repeating
it ten times and averaging the results.

The sentiment analysis model that we used was trained with movie reviews
and may have misclassified sentences since code reviews tend to have variable
names or other artifacts that could skew the analysis. A mitigation could be to
train the sentiment analysis model with a sufficiently large sample of manually
classified code review messages.

The default parser used to parse the syntax of sentences in Stanford CoreNLP
is based on Probabilistic Context-Free Grammar (PCFG). In our initial of anal-
ysis, the parser would timeout when parsing long code review messages. In the
subsequent analyses, we have used a faster but marginally less accurate Shift-
Reduce Constituency Parser (SR). We do not believe that the use of the SR
parser may have had an impact on any downstream operations performed on
the syntactic parse trees.

6 Summary

In this study, we used natural language processing to characterize linguistic
features—inquisitiveness, sentiment and syntactic complexity—in conversations
between developers participating in a code review. We collected these features
from 3,994,976 messages spread across 788,437 code reviews from the Chromium
project. We collected 1,462 vulnerabilities and identified code reviews that had
the opportunity to prevent the vulnerability in the past. We then used asso-
ciation analysis to evaluate if the linguistic features proposed were associated
with the likelihood of code reviews missing a vulnerability. We found that code
reviews with lower inquisitiveness, higher sentiment, and lower complexity were
more likely to miss a vulnerability. In addition to the linguistic features, we com-
puted the relative importance measure—TF-IDF—of 2,089,579 unique lemmas
obtained from words in code reviews messages. We used a subset of the lemmas
as features to build a Näıve Bayes classifier capable of differentiating between
code reviews that are neutral and those that had missed a vulnerability. The
average precision, recall, and F-measure of the classifier were 14%, 73%, and
23%, respectively.

We believe that our characterization of the linguistic features and the clas-
sifier will help developers identify potentially problematic code reviews before a
vulnerability is missed.

A Comparing Distribution of Inquisitiveness, Sentiment
and Complexity Metrics

The comparison of the distribution of inquisitiveness, sentiment and complexity
metrics for neutral and missed vulnerability code reviews is shown in Figure 3.
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Fig. 3. Comparing the distribution of inquisitiveness, sentiment and complexity metrics
for neutral and missed vulnerability code reviews
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