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Abstract—Existing work on identifying security requirements
relies on training binary classification models using domain-
specific data sets to achieve a high accuracy. Considering that
domain-specific data sets are often not readily available, we
propose a domain-independent model for classifying security
requirements based on two key ideas. First, we train our
model on the description of weaknesses from the Common
Weakness Enumeration (CWE) data set. Although CWE does
not describe requirements, it describes security weaknesses that
are manifestations of unrealized security requirements. Second,
we exploit a one-class classification model that relies only on
positive samples (description of weaknesses in CWE), eliminating
the need for negative samples, collecting which can be nontrivial.

We evaluated our model on three industrial requirements
documents from different domains. We found that a One-Class
Support Vector Machine trained with domain-independent CWE
data set outperforms a model from prior literature by identifying
security requirements with an average precision, recall and F-
score of 67.35%, 70.48% and 67.68 %, respectively. Further, con-
sidering data sets from prior literature (consisting of both positive
and negative examples), we found that one-class classifiers trained
with only positive examples outperformed binary -classifiers
trained with both positive and negative examples in two out of
three evaluation data sets, demonstrating the potential value of
one-class classification for security requirements identification.

Index Terms—security requirements; classification; common
weakness enumeration; domain-independent; one-class svm

I. INTRODUCTION

Understanding security requirements is a key step toward
engineering a secure system. Accordingly, there has been a
substantial amount work on security requirements engineering
[1], with a strong focus on eliciting and analyzing security
requirements [2]. For example, methods such as secure ix
[3] and misuse cases [4] provide systematic steps to elicit,
represent, and reason about security requirements.

Software systems may sometimes be built with no sys-
tematic consideration of security, because, for example, se-
curity was initially not considered as critical to the system
or security experts were not available during requirements
engineering. Security requirements of such systems are likely
to be incomplete, obscure and distributed across several textual
documents. When such systems reconsider security (when a
security vulnerability surfaces, for example), it is crucial to
assess the extent to which the current requirements specify se-
curity. Manually inspecting requirements-related documents to
identify security requirements can be tedious and error prone.
Thus, there is a need for automated approaches to identify
security requirements to aid secure software engineering.

Knauss et al. [5] show that security requirements can be
automatically identified using a machine-learned classifier and
that such a classifier performs best when trained with a
domain-specific data set. Consider two industrial requirements
documents from different domains: the Global Platform Speci-
fication (GPS) [6] and the Customer Premises Network (CPN)
specification [7], for example; the results presented by Knauss
et al. show that a Naive Bayes classifier trained with and tested
on GPS yields an F-score as high as 96%, but, when trained
with CPN and tested on GPS, the F-score is as low as 23%.

Domain-specific training data sets are not readily available
for most domains. Further, curating such a training data set,
wherein an expert must classify requirements as security and
non-security for a given domain, is time consuming. Thus,
relying on domain-specific datasets limits the practical utility
of automated security requirements identification.

In this work, we attempt to address a key question: Can
we train a domain-independent classifier that can effectively
identify security requirements across domains?

The first challenge in realizing a domain-independent se-
curity requirements classifier is to find a domain-independent
training data set. However, we found no such data sets in
the problem (requirements) domain. We then expanded our
search beyond the problem domain to also include solution
domains (e.g., descriptions of architectural tactics, weaknesses
and vulnerabilities), which led us to the Common Weakness
Enumeration (CWE) [8] as a potential training data set. The
CWE is a formal list of software weakness types intended to
serve as the common language for describing software secu-
rity weaknesses in architecture, design, or code. Intuitively,
software weaknesses could be considered as describing reper-
cussions of unrealized security requirements. We conjecture
that the language used to describe security requirements and
that used to describe weaknesses overlap and thus it may be
possible to train a domain-independent security requirements
classifier using the description of weaknesses. For instance,
the requirement “When applicable a Security Domain shall
Verify the load file data block signature when requested by
the OPEN.” from the GPS [6] data set overlaps with the
description of CWE-347 [9] “The software does not verify,
or incorrectly verifies, the cryptographic signature for data.”
We explore this conjecture in the following research question:

RQ1 How effective is the CWE data set for training a
domain-independent security requirements classifier?



The second challenge in realizing a domain-independent
security requirements classifier is to find a specific classifier to
train. Most classifiers, in their simplest forms, perform binary
classification, which requires both positive (security require-
ments) and negative (non-security requirements) samples for
training. However, the CWE data set provides only positive
samples. Curating negative samples is nontrivial—there can be
a variety of requirements not related to security. Also, training
a binary classifier with only a few arbitrary negative samples
may overfit the classifier to the training data, which does not
not generalize for new, out-of-training, samples.

Due to the lack of a representative set of negative samples,
we consider an alternative type of machine learning approach
known as one-class classification [10], traditionally used for
novelty and outlier detection. In the absence of negative
samples, a one-class classifier learns the boundary of positive
samples and treats samples outside the learned boundary as
negative. In RQ2, we apply one-class classification to replicate
the empirical analysis of Knauss et al. [5] to assess if the
effectiveness of classification is an artifact of the training data
set or the machine learning approach used.

RQ2 How effective is one-class classification for iden-
tifying security requirements?

Contributions: We propose (1) a domain-independent
model trained using descriptions of weaknesses from the
CWE data sets, offering a general solution to the security
requirements identification problem; and (2) a one-class clas-
sification model as opposed to a binary classification model
for identifying security requirements, thereby, eliminating the
need to collect negative training samples. We believe that our
contributions are novel and open new avenues to approach a
variety of problems in security requirements engineering, in
particular, and software engineering, in general.

II. METHODOLOGY

The following subsections describe the three key steps we
follow to answer our research questions.

Step 1 Data sets collection
Step 2 Model building
Step 3 Performance evaluation

Step 1: Data Sets Collection

In the first step, we identified data sets to use in training
and evaluating a model to classify security requirements.
We manually identified and collected the training data sets,
whereas, the evaluation data sets were publicly available [5].
We describe the approach followed to collect the training data
sets and provide an overview of the evaluation data sets.

1) Training Data Sets: The training data sets collected in
our work are an important contributions since there are no
existing data sets containing domain-independent specification
of security requirements, to the best of our knowledge.

We started the data sets collection with an intuition that de-
scriptions of the repercussions of unrealized security require-
ments may be valuable for identifying security requirements.

Two sources of information on such repercussions are: (1) the
description of the vulnerabilities contained in the National
Vulnerability Database (NVD) and (2) the summary and
extended description of weaknesses in the Common Weakness
Enumeration (CWE) database. We have chosen the latter,
referred to as the CWE data set, in our study as the description
of vulnerabilities tend to be at a lower level of abstraction.

The CWE data set collected in our work, in its simplest
form, contains only the summary of the weaknesses. However,
a variant of the CWE data set, called the Extended CWE
(ExCWE) data set contains the summary of the weakness
appended with the corresponding extended description. We
chose to use two different variants of the CWE data set
because the extended description is, as the name suggests,
more verbose than the summary and may contain additional
information that could be relevant.

The CWE data set is at a relatively higher level of abstrac-
tion as the description of weaknesses tends to be fairly generic
in terms of the language used to describe the weakness and its
applicability. For example, the vulnerability CVE-2015-6765
[11] is associated with the weakness CWE-416 which has the
summary ‘“Referencing memory after it has been freed can
cause a program to crash, use unexpected values, or execute
code.” [12]. The extended description of CWE-416, on the
other hand, is fairly detailed but still at a higher level of
abstraction because it does not contain any code snippets.

We started the data collection by downloading the XML
formatted data files (Version 2.10) from the CWE website [13].
We parsed the XML files to obtain the summary and extended
description of all weaknesses, resulting in CWE and ExCWE
data sets, each with descriptions of 720 weaknesses.

2) Evaluation Data Sets: We evaluate our domain-
independent security requirements classifier via three expert-
labeled data sets used in prior work [5]: Customer Premises
Network (CPN) specification [7], Electronic Purse Specifica-
tion (ePurse) [14] and Global Platform Specification (GPS) [6].
These data sets contain requirements specification in natural
language classified by experts as security or non-security.
Shown in Table I is the number of security and non-security
requirements in the three evaluation data sets.

TABLE I
DISTRIBUTION OF SECURITY AND NON-SECURITY REQUIREMENTS IN THE
EVALUATION DATA SETS

Number of Requirements

Data Set
Security  Non-security
CPN 41 169
CePurse 8 4
Gps 63 15

Step 2: Model Building

In this step, we train one-class classification models with
the CWE and ExCWE datasets, which contain descriptions of
weaknesses in natural language. The first step toward training



a classifier from these datasets is to represent the natural
language descriptions in a vector space.

We used the Term Frequency-Inverse Document Frequency
(TF-IDF) vectorizer [15] to construct a matrix in which each
row represents a weaknesses, columns represent unique words
(tokens) across all weaknesses and each entry in the matrix
corresponds to the TF-IDF value of a token in a weakness.
The rows in the TF-IDF matrix become training instances and
the columns become features in the model.

The TF-IDF matrix typically contains several hundred
columns. We performed feature selection by ordering the
features by descending order of TF values and selecting the
top n features. We built several models with varying values of
n and selected the model that was most effective in identifying
security requirements in the evaluation data sets. The top 100
tokens in the CWE training data set is shown in Figure 1 to
enable an intuitive interpretation of the data set.
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III. RESULTS

RQI: How effective is the CWE data set for training a domain-
independent security requirements classifier?

In this research question, we explore the effectiveness
of using domain-independent data sets to identify security
requirements. We use the one-class classification algorithm in-
troduced earlier to build models by learning from the domain-
independent data sets. We evaluate the performance of our
models for each of the three evaluation data sets.

Figure 2 compares the performance metrics for One-Class
SVM models trained with varying number of features from
CWE and ExCWE data sets and tested on each of the three
evaluation data sets. Shown in Table II are the performance
metrics from the most effective One-Class SVM model in each
of the three evaluation data sets. From Table II, we observe
that the One-Class SVM models yield a mean F; score of
67.68%.

TABLE 11
PERFORMANCE OF THE MOST EFFECTIVE ONE-CLASS SVM MODEL
TRAINED WITH THE DATA SETS PROPOSED IN OUR WORK
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Fig. 1. Top 100 tokens in the CWE data set by cumulative TF-IDF scores
With the data sets in vector space, we trained One-Class
Support Vector Machine (SVM) classifiers as implemented in
scikit-learn [16], [17]. We used the Radial Basis Function as
a kernel with the One-Class SVM. The radial basis function
has a parameter, v, that controls the influence of training
samples on the support vectors. We tuned  using 10-fold cross
validated randomized parameter optimization [18] approach,
repeated 100 times in each of the two training data sets. We
found the optimal values to be v = 1.34e—03 for CWE and
v = 6.10e—03 for EXCWE.

Step 3: Performance Evaluation

In this step, we assessed the performance of the one-
class classification model when applied to identify security
requirements in the evaluation data sets. We used the weighted-
average versions of the standard binary classification perfor-
mance evaluation metrics: precision (P), recall (R) and F-
score (F1). In weighted-averaging, the precision, recall and F-
score are computed for each class (security and non-security
in our case) and averaged by considering the number of true
instances of each class to account for class imbalance.

Data Set
Features P R F1
Evaluation  Training
CPN CWE 356 73.39% 79.52%  74.16%
ePurse ExCWE 11  60.76% 64.51% 61.26%
GPS ExCWE 11 67.90% 6741% 67.62%

Shown in Table III are the performance metrics of the most
effective models from Knauss et al. [5] in each of the three
evaluation data sets. These models are based on Naive Bayes
classifiers trained with one or two of the three evaluation data
sets and tested on one of the remaining data sets.

TABLE III
PERFORMANCE OF THE MOST EFFECTIVE NAIVE BAYES CLASSIFIERS IN
PRIOR WORK BY KNAUSS ET AL. [5]

Data Set
P R Fy
Evaluation  Training
CPN GPS 65.00%  29.00%  40.00%
ePurse GPS 48.00%  72.00%  58.00%
GPS ePurse 85.00% 43.00%  57.00%

Comparing the metrics in Tables II and III, we observe that
our one-class models outperform models from prior literature.

One-Class SVM models trained using CWE data sets are
effective at identifying security requirements. They yield
a mean precision, recall and F-score of 67.35%, 70.48%
and 67.68%, respectively, and outperform Naive Bayes
classifiers from prior work [5].




Performance Metrics from the One-Class SVM Model
CWE and ExCWE (Training) CPN, ePurse and GPS (Evaluation)
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Fig. 2. Performance of the One-Class SVM model (trained on CWE and ExCWE data sets with varying number of features) when applied to identify security

requirements in the evaluation data sets (CPN, ePurse and GPS)

RQ2: How effective is one-class classification for identifying
security requirements?

In the previous research question, we found that one-class
classification models trained with the CWE and ExCWE data
sets are more effective in identifying security requirements
than Naive Bayes classifiers from prior literature. However,
the performance of our models can be attributed to the training
data sets or the one-class classification algorithm used to learn
from the training data sets.

In this research question, we replicate a subset of the exper-
iments from Knauss et al. [5] using the one-class classification
approach to learn from security requirements in the training
data sets. To enable a direct comparison, we replicated the
experiments for the training and evaluation data set pairs
from Table III. The performance metrics collected from the
replication are presented in Table IV.

TABLE IV
PERFORMANCE OF THE ONE-CLASS CLASSIFICATION MODELS
REPLICATED ON TRAINING AND EVALUATION SETS IN TABLE III

Data Set
Features P R Fi
Evaluation  Training
CPN GPS 260  75.00% 80.47%  73.41%
ePurse GPS 2 5387% 50.81% 51.97%
GPS ePurse 239 67.96% 6741%  59.61%

Comparing Tables III and IV, we observe that the perfor-
mance of the One-Class SVM model is better than that of the
Naive Bayes classifier from prior literature in two evaluation
data sets, but worse for one evaluation data set. However, we
note that the model trained with the domain-independent CWE
data sets is still more effective than the one trained with the
security requirements from the evaluation data sets.

The One-Class SVM model is more effective at identifying
security requirements than a Naive Bayes classifier from
prior work [5] in two of our three evaluation data sets.

IV. LIMITATIONS

We identify four limitations of our work, and directions for
future research, where appropriate.

First, we considered two potential sources of data (Sec-
tion II) that may be similar to descriptions of security re-
quirements. However, we chose to use only one source—the
description of weaknesses from the CWE—in the empirical
analysis as the CWE data was at a higher level of abstraction
than the other data set—the description of vulnerabilities from
the NVD. As an exploratory exercise, we trained a One-Class
SVM model using the NVD data set but the size of the NVD
data set (84,161 rows) posed a challenge in collecting the
model performance metrics across a wide range of features



in the model. A future direction is to explore the suitability of
NVD data set for security requirements identification.
Second, we studied only a single one-class classification
algorithm, the One-Class SVM. We performed a preliminary
exploration of the Isolation Forest [19], an alternative one-class
classification approach. However, we found its performance
to be worse compared to the One-Class SVM model for
the subset of tests we performed. Isolation Forest and also
other one-class classification approaches [20] remain vastly
unexplored for security requirements identification (and for
solving other problems in software engineering, in general).
Third, our domain-independent data sets and the One-Class
SVM model go hand-in-hand. Indeed, the choice of using a
one-class classification model was motivated by the fact that
the CWE data sets provided us instances belonging to a single
class (security requirements) only. As a result, we could not
objectively evaluate the contributions of the data sets and the
one-class classification algorithm to the performance gains
that our models yield. However, we reiterate that our second
research question is essentially controlling for the effect of
the training data sets collected in our work while assessing
the effectiveness of the classification algorithm alone.
Finally, although the One-Class SVM model we proposed
outperforms the Naive Bayes classifier from prior literature,
the mean F-score (67.68%) of the One-Class SVM model
leaves a lot to be desired. We believe that the utility of our
models is in its ability to act as a preliminary sieve to identify
security requirements. The subset of requirements identified
by the model may then be manually assessed, considerably
lowering the effort required had the model not been available.

V. RELATED WORK

Understanding software requirements is a nontrivial task
as requirements tend to be scattered across a variety of
structured and unstructured sources. This also applies to, and
the scattering is probably worse, for security requirements. Re-
searchers have been attempting to aid designers and developers
in understanding requirements by consolidating requirements
from multiple sources [21] and identifying and visualizing
quality concerns from requirements [22]. Since requirements
are typically specified using natural language, researchers
have attempted to classify requirements using natural language
processing techniques [23], [24], [5].

At a high-level, requirements may be classified into func-
tional and non-functional. Among the non-functional require-
ments, requirements related to security are regarded as critical
as these requirements tend to be cross-cutting. Therefore,
identifying security requirements is of prime importance.
However, recruiting security experts to accomplish this goal
may not be feasible. Fortunately, researchers [25], [5] have
proposed classifiers to automatically identify security-related
requirements from requirements specification.

A key challenge in building a classifier to identify different
types of requirements is that the language used to specify
requirements tends to vary across domains. The performance
of the classifiers evaluated by Knauss et al. [5] shows that a

classifier trained to identify security-related requirements in a
particular data set performs poorly when applied to identify
security-related requirements in another data set.

In contrast to existing works, we attempt to build a domain-
independent model for identifying security requirements using
a one-class classification model trained on data collected from
a repository of common security weaknesses.

VI. CONCLUSION

Automatically identifying security requirements, and thus,
knowing what is missing, is key to engineering a secure
system. To this end, we explored the possibility of building a
domain-independent model capable of identifying security re-
quirements. We composed training data sets from descriptions
of security weaknesses from the Common Weakness Enumera-
tion (CWE) website. We then trained a One-Class SVM model
with the training data set and assessed its effectiveness on three
evaluation data sets from prior literature.

We found that the One-Class SVM’s mean precision, recall
and F-score in identifying security requirements are 67.35%,
70.48% and 67.68%, respectively, and that it outperformed a
domain-dependent Naive Bayes classifier from prior literature.
In a follow-up, we replicated the empirical analysis from a
prior work using the One-Class SVM to understand if the
improved security requirement identification performance was
due to the CWE training data sets or the machine learning
approach used. We found that the One-Class SVM trained with
the CWE data sets were more effective than that trained using
security requirements from the evaluation data sets. Thus, both
One-Class SVM and the domain-independent CWE data sets
add value in automatically identifying security requirements.
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