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Abstract—Software metrics help developers discover and fix
mistakes. However, despite promising empirical evidence, vul-
nerability discovery metrics are seldom relied upon in practice.
In prior research, the effectiveness of these metrics has typically
been expressed using precision and recall of a prediction model
that uses the metrics as explanatory variables. These prediction
models, being black boxes, may not be perceived as useful by
developers. However, by systematically interpreting the models
and metrics, we can provide developers with nuanced insights
about factors that have led to security mistakes in the past. In this
paper, we present a preliminary approach to using vulnerability
discovery metrics to provide insightful feedback to developers
as they engineer software. We collected ten metrics (churn,
collaboration centrality, complexity, contribution centrality, nest-
ing, known offender, source lines of code, # inputs, # outputs,
and # paths) from six open-source projects. We assessed the
generalizability of the metrics across two contextual dimensions
(application domain and programming language) and between
projects within a domain, computed thresholds for the metrics
using an unsupervised approach from literature, and assessed
the ability of these unsupervised thresholds to classify risk
from historical vulnerabilities in the Chromium project. The
observations from this study feeds into our ongoing research
to automatically aggregate insights from the various analyses to
generate natural language feedback on security. We hope that
our approach to generate automated feedback will accelerate
the adoption of research in vulnerability discovery metrics.

Index Terms—metric, threshold, security, vulnerability, inter-
pretation

I. INTRODUCTION

Vulnerability discovery metrics, having been empirically-
validated to be associated with historical vulnerabilities, have
incredible potential to provide insights into the engineering
failures that may have led to the introduction of vulnerabilities.
We have well over 300 metrics in the literature that can be
used to quantify security attributes of software [1] of which at
least one hundred metrics, by our preliminary review, have
been proposed to assist in vulnerability discovery. Despite
empirical evidence of the association between metrics and
vulnerabilities, their adoption in practice has been limited.
An attribute often cited as inhibiting metrics’ adoption is
their ineffectiveness as explanatory variables in a vulnerability
prediction model [2].

In prior vulnerability discovery metrics literature, there
seems to be an overwhelming emphasis on optimizing pre-

cision and recall of vulnerability prediction models at the
expense of interpretability, usability, and actionability of the
insights from such models. However, by using the performance
of a vulnerability prediction model to infer the utility of
metrics, we are ignoring the metrics’ ability to tell a story, as
Fenton and Neil suggested in their software metrics roadmap
almost twenty years ago [3]. Even if we had a vulnerability
prediction model with a precision and recall of 90% in one
project, we may not be able to apply it to predict vulnerabilities
in a different project [4]. The insights from such a model and
its metrics, however, may be transferable as being indicators of
engineering failures that may have led to vulnerabilities in the
past. For instance, consider a metric that identifies if a file is
on the approximated attack surface [5] or one that quantifies
the proximity of a function to the attack surface [6]. These
metrics may not yield a marked improvement in precision and
recall but provide valuable insights to contextualize the change
that developers make to the software.

Engineering secure software is a nuanced endeavor requir-
ing developers to think, oftentimes speculate, about obscure
execution scenarios that may compromise users. In such
scenarios, developers can benefit from being aware of the en-
gineering failures that have potentially led to the introduction
of vulnerabilities in the past.

Our research vision is to assist developers in engineering
secure software by providing a technique that generates sci-
entific, interpretable, and actionable feedback on security as
the software evolves [7]. Our goal in this paper is to propose
an approach to generate natural language feedback on security
through the interpretation of vulnerability discovery metrics.
In using data- and metrics-driven insights to provide feedback
to developers, particularly in a context where developers can
have a conversation about security (like in a code review),
we hope to raise the awareness of developers to the (global)
impact their changes may have on attributes associated with
historical vulnerabilities.

We address the following research questions:

RQ 1 Generalizability Are vulnerability discovery metrics
similarly distributed across projects?

RQ 2 Thresholds Are thresholds of vulnerability discovery
metrics effective at classifying risk from vulnerabilities?



II. METRICS

We collected ten metrics shown to be associated with his-
torical vulnerabilities. The choice of the metrics was informed
by the pilot phase of a systematic literature review [8] on
vulnerability discovery metrics being conducted in parallel.

The ten metrics considered in this study are:
1. Churn - The total number of lines added, modified, and

deleted throughout the history of a file [9]. We collected
the metric at the commit level and aggregated it at the
file level by computing the sum of the metric.

2. Collaboration (Centrality) - The maximum of the edge
centrality of edges representing files in a collaboration
network [10]. A collaboration network is an unweighted
and undirected graph in which nodes represent developers
and edges represent files. An edge exists between two
developers if they both changed at least one file.

3. Contribution (Centrality) - The node betweenness central-
ity of nodes representing files in a contribution network
[10]. A contribution network is a weighted and undirected
bipartite graph with two sets of nodes: files and devel-
opers. An edge exists between a developer node and a
file node if the developer made a change (commit) to the
file. The weight of the edge is the number of changes a
single developer made to a particular file.

4. (Cyclomatic) Complexity - The number of unique decision
paths through a function [11]. We collected this metric
at the function level and aggregated it at the file level by
computing the sum of the metric.

5. (Known) Offender - A binary-valued metric that indicates
if a file has been fixed for a vulnerability in the past [12].

6. Nesting - The maximum nesting level of control structures
in a function [11].

7. Source Lines of Code - The total number of lines of
source code in a file [9].

8. # Inputs - The number of inputs that a function uses
[11]. We collected this metric at the function level and
aggregated it at the file level by computing the sum of
the metric.

9. # Outputs - The number of functions that a given function
calls [11]. We collected this metric at the function level
and aggregated it at the file level by computing the sum
of the metric.

10. # Paths - The number of unique decision paths through
a function [11]. We collected this metric at the function
level and aggregated it at the file level by computing the
sum of the metric.

While we implemented the algorithms to collect the con-
tribution and collaboration centrality metrics, we used git
to collect the churn metric, a manual process to collect
the offender metric, and SciTools Understand to collect the
remaining metrics. Since we aim to collect, and analyze,
these metrics from a sizable number of projects, we had
to make some simplifying changes to the way the metrics
are implemented. For instance, in collecting the collaboration
and contribution metrics, Meneely et al. [10] restricted the

time period of changes considered to 15 months. In our
implementation of the metrics, we do not apply any such
restrictions.

We implemented the metrics as self-contained microservices
which will be released as containers as soon as our systematic
literature review mentioned earlier is concluded.

III. METHODOLOGY

In this section, we describe the methodology used to collect
and analyze the data to address our research questions.

A. Data Collection

We collected nine of the ten vulnerability discovery met-
rics mentioned in Section II from six open-source projects
spanning three domains. Being a manually collected metric,
offender was difficult and time consuming to collect from all
six projects. Therefore, we only collected it for the Chromium
project, reusing a considerable portion of the data collected as
part of a previous work [13]. The projects that we considered
in our study are shown in Table I.

TABLE I
PROJECTS FROM WHICH THE VULNERABILITY DISCOVERY METRICS WERE

COLLECTED

Domain Project Language Size*

Browser
Chromium C/C++ 9,054,450
Firefox C/C++ 6,977,203

Operating System
Linux C/C++ 13,101,179
OpenBSD C/C++ 9,147,222

Application Server
Tomcat Java 326,748
WildFly Java 524,240

*Total number of source lines of code across all languages.

We only collected the metrics from file paths ending with
the extensions .c, .cc, .cpp, .cxx, .h, .hh, .hpp, .hxx,
or .inl for C/C++ projects and .java for Java projects.

B. Data Analysis

In the subsections that follow, we describe the series of
analysis we performed on the vulnerability discovery metrics
collected from the six open-source projects. We used R [14]
version 3.5.1 to conduct our data analysis.
Assessing Normality

In using statistical methods, we must validate the assump-
tion of normality to inform the choice of parametric or
nonparametric statistical methods. We used the Anderson-
Darling test to assess if the metrics collected from a project are
normally distributed. We found, with statistical significance (p-
value � 0.001), that no discrete- or continuous-valued metric
was normally distributed in any of the projects.
Assessing Generalizability

In addressing RQ 1, we wanted to assess if the vulnerability
discovery metrics proposed in the literature are generalizable.
The interpretation of the term generalizability may be sub-
jective. Therefore, we define the necessary (not sufficient)
condition for generalizability as the need to have consistent



distribution. We assessed the generalizability condition of a
metric by comparing the distribution of the metric values
collected from different projects. We used the same approach
that Zhang et al. [15] used to assess the impact of contextual
dimensions on the distribution of metrics.

We used the nonparametric Kruskal–Wallis to assess if the
sample distribution of metric values collected from projects,
grouped by contextual dimensions, originated from the same
underlying distribution. We consider the outcome from the
Kruskal–Wallis test to be statistically significant if p-value <
2.78e − 03 = 0.05/9/2 (α = 0.05 corrected for multiplicity
using Bonferroni Correction).

A statistically significant outcome from Kruskal–Wallis test
would indicate that at least one metric distribution is different
from the rest. To explain the difference(s) further, we supple-
ment the outcome from Kruskal–Wallis test with observations
from pairwise comparison of distribution of metric values
using the nonparametric Mann–Whitney–Wilcoxon test.

We consider the outcome from the Mann–Whitney–
Wilcoxon test to be statistically significant if p-value <
7.94e − 04 = 0.05/63 (α = 0.05 corrected for multiplicity
using Bonferroni Correction). The inference from a statisti-
cally significant outcome from Mann–Whitney–Wilcoxon test
is that the metric distributions being assessed are different.
To quantify the magnitude of the difference in distributions,
we used Cliff’s δ [16], a nonparametric effect size measure.
The difference between distributions is considered negligible
when δ < 0.147, small when 0.147 ≤ δ < 0.33, medium
when 0.33 ≤ δ < 0.474, and large when δ > 0.474 [17].

In summary, we consider a metric to satisfy the general-
izability condition if it is similarly distributed irrespective of
contextual dimensions and between projects within a domain
with negligible to medium effect size (same as the threshold
of large effect size used by Zhang et al. [15]).
Computing Thresholds

Vulnerability discovery metrics are typically evaluated using
a supervised approach requiring data on historical vulnera-
bilities to train a prediction model that uses the metrics as
explanatory variables. While some projects may have a curated
list of historical vulnerabilities to satisfy this prerequisite, a
model trained with data from one project may not be directly
applicable to discover vulnerabilities in a different project [4].
An unsupervised approach is, therefore, needed.

An intuitive interpretation of a metric is to establish, and
use, thresholds to label an entity being measured to exhibit
certain attribute to a higher or lower degree. While computing
a universal threshold for all projects is intractable, Lanza and
Marinescu suggest using statistical information rankings to
determine explicable thresholds [18].

In our study, we used the methodology proposed by Alves
et al. [19] to compute the thresholds. Despite being an unsu-
pervised approach, the methodology proposed by Alves et al.
was found to be effective in the prediction of fault-proneness
in comparison with other supervised approaches [20].

We compute the thresholds for only those metrics that
satisfied our generalizability condition. As proposed by Alves

et al. [19], we compute the thresholds by taking metric values
from all projects together and use the same 70%, 80%, and
90% of the weighted (using the source lines of code metric)
metric value averaged over all projects to determine the risk
levels. We use the following risk levels to assess risk using
a metric (m): low (m < 70%), medium (70% ≤ m < 80%),
high (80% ≤ m < 90%), and critical (m ≥ 90%).

In addressing RQ 2, we use the metrics’ thresholds to
classify the risk from metrics collected from known (histor-
ically) vulnerable files (determined by the offender metric).
We quantify the effectiveness of such risk classification by
expressing the coverage (i.e. percentage of vulnerable files
covered) of and assessing the odds of finding a vulnerable
file in each of the non-trivial risk levels (i.e. risk levels other
than low).

IV. RESULTS

In the subsections that follow, we present our empirical
analysis and observations to address the research questions.

RQ 1: Generalizability

Question: Are vulnerability discovery metrics similarly dis-
tributed across projects?

Motivation. The literature has no shortage of security
metrics with over 300 metrics proposed over the years [1].
However, as Morrison et al. report, a considerable portion of
these metrics have either been evaluated solely by the authors
who proposed the metrics (85%) or not empirically evaluated
at all (40%) [1]. Furthermore, the empirically-evaluated met-
rics may have been evaluated in isolation in the context of a
few projects with limited potential for generalizability. A key
first step toward realizing the (near) universal adoption of these
metrics is to assess if these metrics are generalizable across
multiple projects. The assertion being that the insights that one
can gain from a generalizable metric can be transferred from
one project (perhaps one that has had engineering failures in
the past) to another.

The motivation for the generalizability research question is
to assess if security metrics, particularly vulnerability discov-
ery metrics, are generalizable across projects.

Approach. The interpretation of the term generalizability
may be subjective. In our study, we use the similarity in
distribution of metrics across projects as a proxy for generaliz-
ability. The approach to address the research question involved
supplementing insights from Krukal–Wallis test with that from
Mann–Whitney–Wilcoxon test and Cliff’s δ.

Observations. We use a traditional violin plot to compare
the distribution of the nine discrete- and continuous-valued
metrics in the six projects considered in our study. The plot
provides us an inkling of the metrics that are likely to be gener-
alizable. Shown in Figure 1 is a plot comparing the distribution
of churn and collaboration metrics.1 As can be inferred from
the figure, churn appears to be similarly distributed across all
projects (irrespective of domain and language). However, col-
laboration centrality seems to be similarly distributed between

1 We chose churn and collaboration as exemplars to present our observations



TABLE II
MAGNITUDE OF DIFFERENCE IN THE DISTRIBUTION OF CHURN AND

COLLABORATION METRICS SEPARATED BY TWO CONTEXTUAL
DIMENSIONS (DOMAIN AND LANGUAGE) AND BETWEEN PROJECTS

WITHIN A DOMAIN

Dimension X Y
Cliffs δ

Churn Collaboration

Domain
BR OS 0.2148 (S) 0.1881 (S)
BR AS 0.1928 (S) 0.3062 (S)
OS AS 0.0667 (N) 0.3110 (S)

Language C/C++ Java 0.1497 (S) 0.3078 (S)

Project
Chromium Firefox 0.0610 (N) 0.1043 (N)
Linux OpenBSD 0.2056 (S) 0.9915 (L)
Tomcat WildFly 0.1153 (N) 0.9955 (L)

Legend
BR - Browser, OS - Operating System, and AS - Application Server
Effect Size
(N) δ < 0.147 (S) 0.147 ≤ δ < 0.33 (L) δ > 0.474

projects in the browser domain but differently distributed
between projects in both the operating system and application
server domains and, consequently, between domains.

We supplemented the qualitative inference from the plot
by quantitatively assessing the similarity of distribution using
the Krukal–Wallis test. The outcome from Krukal–Wallis test
was statistically significant (p-value < 2.78e − 03) for all
metrics (including Churn) when separated by domain and
language. The outcome indicates that the distribution of at
least one sample of metrics between the three domains and two
languages is different from the others. To understand the exact
nature of the difference(s), we ran pairwise Mann–Whitney–
Wilcoxon tests using Cliff’s δ to assess the magnitude of
difference. The outcome from the pairwise test for churn and
collaboration metrics is shown in Table II. The effect size
further provides credence to our inference from the plot that
churn is similarly distributed across domains and languages
and between projects within a domain. Collaboration, on
the other hand, is similarly distributed across domains and
languages but differently distributed between projects within
the operating system and application server domains.

We summarize the observations from the statistical anal-
yses in Table III. We found that, with the exception of the
collaboration metric, all metrics are generalizable.

All metrics, except collaboration, are generalizable (i.e. have
similar distributions) across the projects considered in our
study irrespective of domain and language.

A. RQ 2: Thresholds

Question: Are thresholds of vulnerability discovery metrics
effective at classifying risk from vulnerabilities?

Motivation. The benefit of using metrics to support soft-
ware development is the ability to make objective decisions
based on quantifiable aspects of product, process, or people.
However, for the metrics to be an effective tool to support
decision making, there must be an objective way of saying

TABLE III
SUMMARY OF THE ASSESSMENT OF GENERALIZABILITY OF THE METRICS

WITH 3INDICATING THAT A METRIC WAS FOUND TO HAVE A SIMILAR
DISTRIBUTION WITH NEGLIGIBLE TO MEDIUM EFFECT SIZE
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Domain 3 3 3 3 3* 3 3 3 3

Language 3 3 3 3 3 3 3 3 3

Project 3 7 3 3 3 3 3* 3 3

Summary 3 7 3 3 3 3 3 3 3
*Mann–Whitney–Wilcoxon p-value > 7.94e− 04

when the value of a metric indicates specific scenarios. An
example of this is the empirical study that found 200 lines of
code per hour to be a threshold for individual reviews beyond
which there may be degradation in defect discovery [21].

The motivation for the thresholds research question is to
leverage existing approaches to compute thresholds for the
generalizable vulnerability discovery metrics considered in our
study. While we assess the effectiveness of the thresholds to
cover historically vulnerable files, our intention is to use the
thresholds as triggers to determine if developers should be
shown certain feedback about their change.

Approach. We used the methodology proposed by Alves et
al. [19] to compute the thresholds using metric data collected
from all six projects considered in our study. The threshold
value for the metrics are chosen at the same quantiles (70%,
80%, and 90%) as that in the paper by Alves et al. with the
risk levels for a metric (m) being low (m < 70%), medium
(70% ≤ m < 80%), high (80% ≤ m < 90%), and critical
(m ≥ 90%). We assess the effectiveness of the thresholds
in two ways, both of which make use of the historical
vulnerabilities data from the Chromium project. Firstly, we
quantify the distribution of the historically vulnerable files
across the risk levels to ascertain the percentage of vulnerable
files that each risk level captures. Secondly, we compute the
odds of discovering an historically vulnerable file in each of
the risk level. We also compute the odds ratio to assess the
change in odds as we move from one risk level to the next.

Observations. In addressing RQ 1, we found the collabo-
ration metric to not meet our criteria to be considered gener-
alizable. Therefore, we do not include it in our analysis for
RQ 2. Shown in Table IV are the threshold values computed
for each of the eight generalizable metrics. By themselves,
the metric threshold values provide limited (if any) insights;
their utility is to help segregate files into disjoint groups to
highlight risk. The risk levels of medium, high, and critical
are non-trivial and thus we do not consider the risk level of
low in the remainder of this section.

Shown in Table V is the percentage of historically vul-
nerable files (offenders) in Chromium covered by each of
the three non-trivial risk levels. The percentages indicate the
effectiveness of the thresholds, which, on average, captured



Fig. 1. Comparing the distribution of churn and collaboration metrics across all projects considered in our study

TABLE IV
THRESHOLD VALUE OF THE EIGHT GENERALIZABLE VULNERABILITY

DISCOVERY METRICS

Metric
Quantile

70% 80% 90%
Churn 3,403 5,682 12,005

Complexity 197 336 710

Contribution 5.53E+04 1.59E+05 4.95E+05

Nesting 4 5 6

# Inputs 256 412 865

# Outputs 261 415 787

# Paths 4.15E+03 7.86E+04 6.97E+07

Source LOC 1,099 1,826 3,695

23.85% of vulnerable files, going as high as 69.85%, in
aggregate, for the contribution metric.

TABLE V
PERCENTAGE OF VULNERABLE FILES COVERED BY EACH OF THE THREE

NON-TRIVIAL RISK LEVELS (MEDIUM, HIGH, AND CRITICAL)

Metric
% Vulnerable Files Covered

Medium High Critical Aggregate
Churn 7.68% 8.39% 5.85% 21.92%

Complexity 6.62% 5.96% 4.64% 17.22%

Contribution 15.90% 18.95% 35.01% 69.85%

Nesting 9.24% 5.95% 4.27% 19.47%

# Inputs 4.97% 4.97% 4.30% 14.24%

# Outputs 7.28% 6.62% 6.62% 20.53%

# Paths 5.30% 5.96% 4.97% 16.23%

Source LOC 6.26% 3.44% 1.68% 11.37%

Average 7.91% 7.53% 8.42% 23.85%

While the percentage of historical files covered by the risk
levels is interesting, characterizing the effect of a file moving
from one risk level to another is essential if we need to be

able to use thresholds to support any sort of decision making.
Shown in Table VI is the odds of discovering a vulnerable file
(from the Chromium project) in each of the three non-trivial
risk levels. The odds ratios shown in the table quantify the
increase in odds of discovering vulnerable files as a file moves
from one risk level to next. We also present the ratio of odds
in a risk level to that in low. By interpreting the odds ratios
we can make inferences such as a file being 14 times more
likely to be vulnerable when it moves from low to medium
on the churn threshold scale (Odds RatioLow = 13.9862).

On average, non-trivial risk levels delineated by thresholds
of generalizable vulnerability discovery metrics captured
23.85% of the historically vulnerable files in Chromium,
providing support for the effectiveness of the thresholds in
classifying risk from vulnerabilities.

V. TRANSLATING INSIGHTS TO AUTOMATED FEEDBACK

An essential next step—one which we are actively
pursuing—is to translate the interpretation of the vulnerability
discovery metrics to automated feedback on security. Our
approach is inspired by the need to accelerate the adoption
of software engineering research in the industry [22] and
to integrate research with practice in as seamless a way as
possible. Our approach to achieve this translation is predicated
upon addressing three key concerns: (1) when should the
feedback be shown?, (2) what should the feedback contain?,
and (3) where should the feedback be provided?

In this paper, while we found that the risk levels delineated
by the metrics’ threshold were effective at capturing a con-
siderable portion of historically vulnerable files in Chromium,
we are likely to produce high false positives if we simply flag
changes to any file that fall into a particular non-trivial risk
level. The utility of the thresholds, however, is in classifying
risk, or rather, more importantly, classifying the change in risk.
We can use change in risk as a trigger to highlight developers’



TABLE VI
ODDS OF DISCOVERING A VULNERABLE FILE IN EACH OF THE THREE NON-TRIVIAL RISK LEVELS (MEDIUM, HIGH, AND CRITICAL) WITH ODDS RATIOX

BEING THE RATIO OF ODDS IN A PARTICULAR RISK LEVEL TO ODDS IN RISK LEVEL X

Metric
Medium High Critical

Odds Odds RatioLow Odds Odds RatioLow Odds RatioMedium Odds Odds RatioLow ORHigh

Churn 4.57E-02 13.9862 7.96E-02 24.3699 1.7424 1.12E-01 34.3548 1.4097

Complexity 9.48E-02 4.2210 1.61E-01 7.1569 1.6955 2.86E-01 12.7234 1.7778

Contribution 1.84E-02 3.8177 3.52E-02 7.3282 1.9195 1.16E-01 24.1669 3.2978

Nesting 6.36E-02 3.8456 7.39E-02 4.4739 1.1634 8.92E-02 5.3960 1.2061

# Inputs 7.65E-02 3.2952 1.32E-01 5.6655 1.7193 1.97E-01 8.4811 1.4970

# Outputs 7.10E-02 3.2246 8.70E-02 3.9511 1.2253 2.41E-01 10.9488 2.7711

# Paths 6.84E-02 2.9648 9.73E-02 4.2188 1.4230 1.29E-01 5.6069 1.3290

Source LOC 1.89E-01 10.8511 1.93E-01 11.0919 1.0222 2.68E-01 15.4085 1.3892

changes to a particular file addressing the concern on when
the feedback should be shown.

While the change in risk is useful as a trigger, indicating
that a file is now n times more likely to be vulnerable because
it moved from medium to high risk is of little use to the
developer. The interpretation of the vulnerability discovery
metrics is needed to contextualize the change in risk. We pro-
pose using interpretable models such as Logistic Regression,
Decision Trees, and, the more recent, Decision Sets [23] to
characterize the role of each vulnerability discovery metric
in a model. We can then use the characterization to generate
feedback describing the impact that developers’ change may
have on factors known to be associated with vulnerabilities
addressing the concern on what the feedback should contain.

Developers prefer their tools to integrate seamlessly into
the their existing workflows [24]. Code review, being a com-
monplace in most mature software engineering workflows
today, provides the ideal opportunity to provide feedback on
security [25]. TRICORDER, a program analysis ecosystem at
Google, does just this but with static analysis warnings [26].
We propose using code reviews as a medium to provide the
automated feedback on security addressing the concern on
where the feedback should be provided. The use of code
review also enables developer-in-the-loop improvements to our
thresholds and/or feedback.

Developers tend to have specific expectations of the tools
that they use [27], [24], [28]. The vulnerability discovery
metrics, when used appropriately, have the potential to meet
some, if not all, of these requirements. In using the thresholds
and interpretation of the vulnerability discovery models to
provide security feedback as code review comments, we hope
to assist developers in engineering secure software in a way
that they perceive to be useful. As Lakkaraju et al. [23]
state “Interpretable models ... bridge the gap between domain
experts and data scientists.”, we, as researchers, should work
toward translating our metrics to interpretable and actionable
insights for developers. We hope that, in the near future, when
a developer submits a change to a file foo.c that increases
its risk from low to medium as triggered by the churn metric,
we can provide a feedback like “The change to foo.c has
churned 200 lines of code increasing its odds of needing a fix

for a security vulnerability by 5.48%.”

VI. LIMITATIONS

Generalizability is a concept that is much broader than
demonstrating similar distributions. However, in using simi-
larity in distribution as a necessary condition for metric gen-
eralizability, we can reason about the potential for statistically-
derived thresholds from one project to translate to another. In
Section V, we alluded to our approach using developer-in-
the-loop to help continually improve our feedback technique
and we hope this loop will help strengthen the evidence of
generalizability as developers provide their comments on the
threshold-driven feedback.

Although we chose projects spanning three application
domains and two programming language, we may need to
consider more projects to be able to apply our technique at
a broader scale. Some of the projects not represented in our
sample are small projects with short histories, projects devel-
oped in interpreted languages, and closed-source (proprietary)
project. Fortunately, most of our analysis is unsupervised and
we hope can be easily applied to additional projects.

VII. SUMMARY

Our research vision is to assist developers in engineering
secure software by providing a technique that generates sci-
entific, interpretable, and actionable feedback on security as
the software evolves. In this exploratory research study, we
collected ten vulnerability discovery metrics from six open-
source projects and assessed their generalizability in terms
of similarity in distribution and computed thresholds for the
discrete- and continuous-valued metrics using an unsupervised
technique proposed by Alves et al. [19]. With the exception
of one, all discrete- and continuous-valued metrics satisfied
our criteria for generalizability. We also found the thresholds
to be effective at classifying risk from historically vulnerable
files in the Chromium project. The work described here is the
first step in a much broader project to develop an automated
vulnerability discovery interpretation technique to provide
developers valuable security insights as they develop software.
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